Walls

Walls, pillars & planters

![Image of a stone wall](image)

Physical and Geometrical Characteristics - Dry-Cast Wall Units

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>ASTM C 1372</th>
<th>TECHO-BLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength</td>
<td>3 000 psi [21 MPa] min.</td>
<td>5 050 psi [35 MPa] min.</td>
</tr>
<tr>
<td>Durability to freeze-thaw cycles</td>
<td>after 100 cycles 1 % (max.)</td>
<td>after 100 cycles 1 % (max.)</td>
</tr>
<tr>
<td></td>
<td>after 150 cycles 1.5 % (max.)</td>
<td>after 150 cycles 1.5 % (max.)</td>
</tr>
<tr>
<td>Mass loss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water absorption</td>
<td>13 lb/ft³ [208 kg/m³] max</td>
<td>9 lb/ft³ [144 kg/m³] max.</td>
</tr>
<tr>
<td>Dimension tolerance¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>length</td>
<td>± ½” [3 mm]</td>
<td>± ½” [3 mm]</td>
</tr>
<tr>
<td>width</td>
<td>± ½” [3 mm]</td>
<td>± ½” [3 mm]</td>
</tr>
<tr>
<td>height</td>
<td>± ½” [3 mm]</td>
<td>± ½” [1.5 mm]</td>
</tr>
</tbody>
</table>

Notes: ¹ The dimension tolerance is not applicable to split facings or other architectural finish.

Physical and Geometrical Characteristics - Stonedge Collection Wall Units

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength¹</td>
<td>30 MPa min.</td>
</tr>
<tr>
<td>Water/cement ratio</td>
<td>0.45 max.</td>
</tr>
<tr>
<td>Air content²</td>
<td>6 to 9%</td>
</tr>
</tbody>
</table>
| Dimension tolerance³ | Height: ± 5 mm (½")
 | Length and width: ± 13 mm (½") |

Notes: ¹ Test method CSA A23.2-9C
² Test method CSA A23.2-4C
³ Dimension tolerance is not applicable to architectural surfaces.
INSTALLATION GUIDE
SUMMARY OF CHARACTERISTICS

<table>
<thead>
<tr>
<th>Type of wall</th>
<th>GRAVITY RETAINING WALL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Angle</td>
</tr>
<tr>
<td></td>
<td>°</td>
</tr>
<tr>
<td>Borealis</td>
<td>0.0</td>
</tr>
<tr>
<td>Brandon 90 mm [8]</td>
<td>4.4</td>
</tr>
<tr>
<td>Brandon 180 mm [8]</td>
<td>4.4</td>
</tr>
<tr>
<td>Graphix</td>
<td>Variable</td>
</tr>
<tr>
<td>G Force</td>
<td>3.9</td>
</tr>
<tr>
<td>Manchester [9]</td>
<td>0.0</td>
</tr>
<tr>
<td>Mini-Creta 3" [8]</td>
<td>5.3</td>
</tr>
<tr>
<td>Mini-Creta 6" [8]</td>
<td>5.3</td>
</tr>
<tr>
<td>Prescott 2.25" [8]</td>
<td>4.5</td>
</tr>
<tr>
<td>Prescott 4.5" [8]</td>
<td>4.5</td>
</tr>
<tr>
<td>Raffinato 90 mm [8]</td>
<td>4.4</td>
</tr>
<tr>
<td>Raffinato 180 mm [8]</td>
<td>4.4</td>
</tr>
<tr>
<td>Röcka</td>
<td>0.0</td>
</tr>
<tr>
<td>Semma [8]</td>
<td>7.6</td>
</tr>
<tr>
<td>Skyscraper [10,11]</td>
<td>12.7</td>
</tr>
<tr>
<td>Suprema</td>
<td>4.5</td>
</tr>
<tr>
<td>Travertina Raw [8]</td>
<td>5.2</td>
</tr>
</tbody>
</table>

[1] Vertical Retaining walls are constructed without any face inclination or setback.
[2] Heights do not include cap thickness.
[3] - Total Height is the vertical distance measured from the top of the footing (aggregate base) to the top of the uppermost course.
 - Exposed Height is the vertical distance measured from the finished grade at the bottom of the wall to the top of the uppermost course. It does not include the wall depth below grade (embedment).
[4] The maximum wall height for gravity retaining walls recommended in this table is based on the following conditions:
 - The retained soil type considered is gravel with an internal friction angle of at least 36°.
 - There is no surcharge load applied on top of the wall.
 - There is no slope on top of the wall.
 - An adequate drainage system is provided at the back of the wall.
[5] Minimum retaining wall radius is measured at the front face of the wall. It corresponds to the lowest course in an internal curve and to the uppermost course in an external curve.
[7] The maximum height does not necessarily correspond to the amount of blocks in a pallet.
[8] Pillar units sold separately.
[9] Freestanding Maximum Height of 750 mm (29 7/16") is based on a block depth of 300 mm (11 13/16")
[10] Skyscraper units provides the possibility of units combination and the use of an extender to build higher walls.
[11] Skyscraper units allows a near vertical (0.8°) wall construction (4.5 mm [3/16"] setback).
[12] Refer to our wall design charts at www.techo-bloc.com or contact our technical service department.
INSTALLATION GUIDE
SUMMARY OF CHARACTERISTICS

<table>
<thead>
<tr>
<th>Type of wall</th>
<th>FREESTANDING WALL</th>
<th>PILLARS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HEIGHT [2,3]</td>
<td>inside</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>in</td>
</tr>
<tr>
<td>Borealis</td>
<td>612</td>
<td>24”</td>
</tr>
<tr>
<td>Brandon 90 mm [8]</td>
<td>750</td>
<td>29 7/16”</td>
</tr>
<tr>
<td>Brandon 180 mm [8]</td>
<td>750</td>
<td>29 7/16”</td>
</tr>
<tr>
<td>Graphix</td>
<td>600</td>
<td>23 1/2”</td>
</tr>
<tr>
<td>G Force</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manchester [9]</td>
<td>750</td>
<td>29 7/16”</td>
</tr>
<tr>
<td>Mini-Creta 3” [8]</td>
<td>750</td>
<td>29 7/16”</td>
</tr>
<tr>
<td>Mini-Creta 6” [8]</td>
<td>750</td>
<td>29 7/16”</td>
</tr>
<tr>
<td>Prescott 2.25” [8]</td>
<td>650</td>
<td>25 1/2”</td>
</tr>
<tr>
<td>Prescott 4.5” [8]</td>
<td>650</td>
<td>25 1/2”</td>
</tr>
<tr>
<td>Raffinato 90 mm [8]</td>
<td>750</td>
<td>29 7/16”</td>
</tr>
<tr>
<td>Raffinato 180 mm [8]</td>
<td>750</td>
<td>29 7/16”</td>
</tr>
<tr>
<td>Rocka</td>
<td>612</td>
<td>24”</td>
</tr>
<tr>
<td>Semma [8]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suprema</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Travertina Raw [8]</td>
<td>612</td>
<td>24”</td>
</tr>
</tbody>
</table>

[1] Vertical Retaining walls are constructed without any face inclination or setback.
[2] Heights do not include cap thickness.
[3] - Total Height is the vertical distance measured from the top of the footing (aggregate base) to the top of the uppermost course.
 - Exposed Height is the vertical distance measured from the finished grade at the bottom of the wall to the top of the uppermost course. It does not include the wall depth below grade (embedment).
[4] The maximum wall height for gravity retaining walls recommended in this table is based on the following conditions:
 - The retained soil type considered is gravel with an internal friction angle of at least 36°.
 - There is no surcharge load applied on top of the wall.
 - There is no slope on top of the wall.
 - An adequate drainage system is provided at the back of the wall.
[5] Minimum retaining wall radius is measured at the front face of the wall. It corresponds to the lowest course in an internal curve and to the uppermost course in an external curve.
[7] The maximum height does not necessarily correspond to the amount of blocks in a pallet.
[8] Pillar units sold separately.
[9] Freestanding Maximum Height of 750 mm (29 7/16”) is based on a block depth of 300 mm (11 13/16”)
WALLS & PILARS

PRELIMINARY DESIGN ASSISTANCE - REQUEST FORM FOR DESIGN PROFESSIONALS, ENGINEERS AND CONTRACTORS

Techo-Bloc can help you in your preliminary design of retaining walls. However, preliminary design should only be used to assess the suitability of a wall system to a specific project or for estimating budget costs. For final construction designs, please contact a qualified engineer in your area.

CUSTOMER TYPE: Landscape Architect □ Engineer □ Contractor □ Other: ________________________ Are you a Techo-Pro? □ Yes □ No □

1. GENERAL PROJECT INFORMATION

Project Name: __________________________ Address: __________________________
Contact: __________________________ E-mail: __________________________
Entreprise: __________________________ Telephone: __________________________
Postal Code: __________________________
State / Province: __________________________

2. PROJECT SPECIFICATIONS

Type: □ Industrial □ Commercial □ Institutional □ Residential □ Information date required: __________________________ Units (metric or imperial): __________________________

2.1 SPECIAL CONSIDERATIONS

Maximum available space behind wall: __________________________
Maximum required freestanding wall portion: __________________________

3. GENERAL INFORMATION ON WALLS

3.1 SINGLE WALL

Block Product: __________________________ Wall length: __________________________
Maximum wall height (above ground): __________________________
Horizontal Run: __________________________ Vertical Rise: __________________________

*Include only the Retaining portion of the wall. Freestanding portion must be included in section 2.1 under Project Specification.

**If a grading plan is available, include it with this request (drawing should indicate the location of the wall, grade lines and loads). Otherwise clear and detailed sketches must be provided.

3.2 TIERED WALL

Backslope: Horizontal run: __________________________ Vertical rise: __________________________
Platform between walls: Horizontal run: __________________________ Vertical rise: __________________________
Upper wall: Block product: __________________________ Wall height (above ground): __________________________ Wall length: __________________________
Lower wall: Block product: __________________________ Wall height (above ground): __________________________ Wall length: __________________________

Base slope: Horizontal run: __________________________ Vertical rise: __________________________

4. TYPE OF SOIL

If a soil report is available, attach it to this request.

Retained Soil:
□ Clean sand and gravel
□ Clayey gravel
□ Silty sand
□ Clayey sand
□ Silt and clay
□ Other:

Foundation Soil:
□ Clean sand and gravel
□ Clayey gravel
□ Silty sand
□ Clayey sand
□ Silt and clay
□ Other:

5. SURCHARGE ABOVE WALL

TYPE OF SURCHARGE (LOAD) DISTANCE TO WALL
□ ROUTE __________________________
□ PARKING / ALLEY FOR HEAVY VEHICLES __________________________
□ PARKING / ALLEY FOR LIGHT VEHICLES __________________________
□ SWIMMING POOL __________________________
□ PAVED SURFACE __________________________
□ LAWN __________________________
□ OTHER __________________________
COMPATIBILITY CHART

<table>
<thead>
<tr>
<th>Walls & Pillars</th>
<th>Caps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural cap</td>
<td>Brandon cap</td>
</tr>
<tr>
<td>Brandon 90 & 180 mm</td>
<td>x</td>
</tr>
<tr>
<td>Brandon 90 & 180 mm pillar</td>
<td>x</td>
</tr>
<tr>
<td>Escala 3.5”</td>
<td>x</td>
</tr>
<tr>
<td>G-Force</td>
<td>x</td>
</tr>
<tr>
<td>Graphix</td>
<td>x</td>
</tr>
<tr>
<td>Manchester</td>
<td>x</td>
</tr>
<tr>
<td>Mini-Creta Collection</td>
<td>x</td>
</tr>
<tr>
<td>Mini-Creta Pillar 24” Collection</td>
<td>x</td>
</tr>
<tr>
<td>Prescott Collection</td>
<td>x</td>
</tr>
<tr>
<td>Prescott Pillar Collection</td>
<td>x</td>
</tr>
<tr>
<td>Raffinato Collection</td>
<td>x</td>
</tr>
<tr>
<td>Raffinato Pillar Collection</td>
<td>x</td>
</tr>
<tr>
<td>Röcka [does not require a cap]</td>
<td>x</td>
</tr>
<tr>
<td>Semma</td>
<td>x</td>
</tr>
<tr>
<td>Semma Pillar</td>
<td>x</td>
</tr>
<tr>
<td>• Skyscraper</td>
<td>x</td>
</tr>
<tr>
<td>Suprema</td>
<td>x</td>
</tr>
<tr>
<td>Travertina Raw</td>
<td>x</td>
</tr>
<tr>
<td>Travertina Raw pillar</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The combinations shown in this chart are not complete. Other possible combinations exist. • NEW PRODUCT

Applications

<table>
<thead>
<tr>
<th>Applications</th>
<th>Caps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural cap</td>
<td>Brandon cap</td>
</tr>
<tr>
<td>Step</td>
<td>x</td>
</tr>
<tr>
<td>Concrete & step overlay system</td>
<td>x</td>
</tr>
<tr>
<td>Pool coping</td>
<td>x</td>
</tr>
<tr>
<td>Wall single-sided</td>
<td>x</td>
</tr>
<tr>
<td>Wall double-sided</td>
<td>x</td>
</tr>
<tr>
<td>Counter top</td>
<td>x</td>
</tr>
<tr>
<td>Pillar</td>
<td>x</td>
</tr>
</tbody>
</table>
INSTALLATION GUIDE
RETAINING WALLS

Installation outline

01 EXCAVATION
A. Check the location of existing structures and utilities before starting the excavation.
B. Dig out a trench. Its depth should be calculated according to the thickness of the leveling pad and the burial depth of the wall.
C. Plan for a thickness of at least 6” (150 mm) for the leveling pad and consider that at least 10% of the height of the wall should be buried in the ground. In all cases, the wall must be buried no less than 6” (150 mm) deep.
D. In determining the width of the trench, allow for a space of at least 6” (150 mm) at the front of the wall and 12” (300 mm) at the back for drainage fill. Compact and level the excavation base.

FOR GEOGRID REINFORCED RETAINING WALLS
The excavation must also take into account the length of geogrid.

02 FOUNDATION
A. Cover the base and back of the trench with a geotextile. Extend the geotextile towards the back of the excavation and eventually above the drainage fill once it is in place close to the top of the wall.
B. Next, spread the 0-3/4” (0-20 mm) stone in the trench and compact using a vibratory plate or jumping jack, ensuring that the surface is level. The compacted leveling pad must be at least 6” (150 mm) thick.

NOTE FOR STEPPED FOUNDATION
A wall built on an incline requires stepped foundations. For steep inclines, several steps may be required. Construction should start at the lowest level. Each of the steps must follow a level horizontal path and the vertical distance separating the successive steps must equal the height of a block.
03 BUILDING THE FIRST COURSE
A. Using blocks of the same height, place the first course on the compacted leveling pad according to the predetermined layout. Check the alignment and leveling in all directions and make sure that all the blocks are in full contact with the leveling pad and properly supported.
B. Place the exposed surfaces of the blocks side by side. There must be no space between the exposed faces of adjacent blocks.
C. At the back of the wall and on the compacted leveling pad, lay a 4" (100 mm) diameter perforated drain. Connect this drain to the existing drainage system so that it clears the water accumulated behind the wall.

04 BACKFILLING
Backfill at the rear of the wall and the space between the back of the blocks with 3/4" (20 mm) clean stone. Level and settle the clean stone. Any cavities in the blocks must also be filled with clean stone.

05 SUBSEQUENT COURSES
A. Clean the top of each block before laying the next course. Depending on the type of block, install the connectors on the extremity of each block.
B. Lay the subsequent courses, backfilling at the rear of the wall every 8" (200 mm maximum, using the same method outlined in step 4.
C. Make sure the subsequent courses are laid such that the vertical seams are aligned with the blocks below.

FOR GEOGRID REINFORCED RETAINING WALLS
Where geogrids are to be used, cover the clean stone with a geotextile. Select the geogrid according to the type, level and appropriate length. Position the geogrid according to the main reinforcement direction perpendicular to the wall. The geogrid must be continuous all along its embedment length. Splicing of the geogrid in the main reinforcement direction is not permitted. The geogrid must be installed horizontally over the compacted backfill and the previous course of blocks. Fix the connectors on the geogrid and lay the next course of blocks. Pull on the back of the geogrid and maintain its tension by stakes or pins. Repeat with a new section of geotextile and place the reinforced backfill directly behind the drainage fill. Fill and compact up to the level of the blocks. Heavy equipment must not be used less than 3’ (1-m) behind the blocks. Construction equipment must not drive directly over the geogrid. Repeat the various installation steps.

06 FINISHING
Position the course of coping stones (if applicable) or the final course of blocks to complete the wall. The coping stones or final course of blocks must be fixed to the subjacent blocks using concrete adhesive and there must be no space between the blocks.
INSTALLATION GUIDE

RETAINING WALLS

WALL INSTALLATION – GRAVITY WALL

Typical cross section

WALL INSTALLATION – GEOGRID REINFORCED WALL

Typical cross section
The information contained in the design charts is supplied for information purposes only and as such should only be used for preliminary designs. A qualified engineer should be consulted for the final design to be used for construction. TECHO-BLOC and its predecessors, successors, beneficiaries, employees, associates, administrators and insurers can not under any circumstances be held liable for the incorrect use of information contained in the design charts.

The design charts show the number, position and length of the geogrids for a Tech-Bloc inclined wall based on the height of the wall and the load conditions. Furthermore, geogrid may be required for walls with a height lower than the minimum stated. The geogrid layout has been optimized to satisfy the minimum design requirements of the “Design Manual for Segmental Retaining Walls, 3rd Edition” from the National Concrete Masonry Association.

The height (H) of the wall is the total height from the leveling pad to the top of the wall including the coping stones of 75 mm (2.95 in) thick. The wall height varies approximately from 0.6 m (1.97 ft) to 2.5 m (8.20 ft), gradually increasing in height increments of 0.4-0.8 m (1.31-2.62 ft). The type of soil assumed in the reinforced soil zone (reinforced backfill) is a mixture of sand and gravel (minimum friction angle of 36°). The description of the soil is provided for information purposes; it is the actual shear strength parameter that will govern the design.

THE TWO LOAD CONDITIONS ARE:
(i) A horizontal surface above the wall with a surcharge of 6 kPa (125 psf).
(ii) A 1V:3H slope above the wall.

The symbol shows the position and length of the geogrid taken from the front of the block. The height of the wall and the length of the geogrid are given in millimeters.

The foundation soil must be able to support the wall-reinforced backfill system. A geotechnical study to ascertain the bearing capacity of the soil must be carried out. The leveling pad is made of 0-20 mm (0-3⁄4 in) crushed stone. A concrete pad can be used. Compaction must be carried out in successive layers of a maximum of 8 in (200 mm) in thickness and in accordance with project specifications. The minimum burial depth must be 200 mm (8 in) or 10% of the above ground wall height, whichever is greater.

For further information, please contact our technical service department.

Email: WALLS@TECHO-BLOC.COM
Web site: WWW.TECHO-BLOC.COM
DESIGN CHARTS
RETAINING WALLS

THE DESIGN CHARTS FOR:
• BRANDON: 120
• ESCALA: 131
• MINI-CRETA: 150
• RAFFINATO: 174
• SEMMA: 188
• SUPREMA: 198
INSTALLATION GUIDE
RETAINING WALLS

Anchoring systems

BRANDON 180 mm

INCLINED WALL | VERTICAL WALL

HDPE vertical key (2 per unit) inserted in the back vertical slot. The key settles in the second receiving slot of lower block.

Setback of 9/16'' (14 mm) by unit

Front of unit

HDPE vertical key (short)

Brandon 180 mm is equivalent to twice the Brandon 90 mm

G-FORCE

INCLINED WALL

HDPE vertical key (2 per unit) inserted in the vertical slot. The key settles in the receiving slot of lower block.

Setback of 9/16'' (14 mm) by unit

Front of unit

HDPE vertical key (long)

Mini-Creta 6'' is equivalent to twice the Mini-Creta 3''

PRESCOTT 4.5''

INCLINED WALL | VERTICAL WALL

HDPE vertical key (2 per unit) inserted in the back vertical slot. The key settles in the first receiving slot of lower block.

Setback of 11/32'' (9 mm) by unit

Front of unit

HDPE vertical key

Prescott 4.5'' is equivalent to twice the Prescott 2.25''

GRAPHIX

RETAINING WALL | FREESTANDING WALL

HDPE horizontal key inserted in the back groove

Variable

Front of unit

HDPE horizontal key

MINI-CRETA 6''

INCLINED WALL | VERTICAL WALL

HDPE horizontal key is inserted in the back groove.

Setback of 9/16'' (14 mm) by unit

Front of unit

Mini-Creta 6'' is equivalent to twice the Mini-Creta 3''
RAFFINATO 180 mm

INCLINED WALL

HDPE vertical key (2 per unit) inserted in the back vertical slot. The key settles in the second receiving slot of lower block.

VER vertical wall

HDPE vertical key (2 per unit) inserted in the front vertical slot. The key settles in the first receiving slot of lower block.

RAFFINATO 180 mm IS EQUIVALENT TO TWICE THE RAFFINATO 90 mm

SKYSCRAPER

INCLINED WALL

Setback of 2 7/16" (68.5 mm) by unit

VER vertical wall

Precast concrete "Z" Connector inserted in the top groove.

Supremea

INCLINED WALL

Setback of 2 7/16" (68.5 mm) by unit

VER vertical wall

Precast concrete "U" Connector inserted in the top groove.

TRAVERTINA RAW

INCLINED WALL

HDPE vertical key (2 per unit) inserted in the front vertical slot. The key settles in the first receiving slot of lower block.

VER vertical wall

HDPE vertical key (2 per unit) inserted in the back vertical slot. The key settles in the second receiving slot of lower block.
Anchoring system | Connectors in curved wall application

HDPE Horizontal Key
When creating internal curves and the HDPE horizontal keys are in the back groove, two connectors must be installed on each block as illustrated.

HDPE Vertical Key
When creating curves using HDPE vertical keys adjust placement in field to achieve desired curve.

Precast concrete “U” Connector
When creating internal curves with the precast concrete “U” connector, place one connector on top center of each lower course block and adjust placement in field to achieve desired curve.

Precast concrete “Z” Connector
When creating internal curves with the precast concrete “Z” connector, place one connector on top center of each lower course block and adjust placement in field to achieve desired curve.

Anchoring system | Connectors in geogrid reinforced wall application

HDPE Horizontal Key
When installing a geogrid, using HDPE horizontal keys, it must be placed above the connectors. The connectors will therefore be placed before the geogrid. After positioning the geogrid, move the block (from the above course) forward until it touches the connectors and ensures that the system is locked.
When installing a geogrid, using HDPE horizontal keys, it must be placed above the connectors. The connectors will therefore be placed before the geogrid. After positioning the geogrid, move the block (from the above course) forward until it touches the connectors and ensures that the system is locked.

Internal corner

When building a wall with an internal corner, it is recommended to start constructing the wall at the corner and build out from this point in both directions. To form the corner, use the longer modules as illustrated. Build wall B by extending it out from wall A so the end of wall B is aligned with the back of wall A. For subsequent courses, simply alternate the extension of walls A and B.

When using geogrid, it must be extended beyond the internal corner by at least 25% of the total height of the wall. Alternate the extension of the geogrid for subsequent layers (as illustrated in grey).
EXTERNAL CORNER

For walls with an external corner, start building the wall from the corner and continue from this point in both directions. For each subsequent course, alternate the direction of the corner unit and secure the corner unit to the block below using concrete adhesive.

Oblique corner

The longer modules should be used to build an oblique external corner. Alternatively, corner can be replaced by a curve.

Note: Adjust placement in field to achieve desired angle.
INSTALLATION GUIDE
RETAINING WALLS

Internal curve

The Techo-Bloc retaining wall system allows walls to be built with internal and external curves. These curves can be achieved without cutting the blocks. You will need to angle the curves according to the minimum radius specified by Techo-Bloc.

When building a wall with an internal curve, it is recommended to start building the wall at the center of the curve and place blocks alternately to the left and right of the central block. If the wall to be constructed requires a setback (inclined wall), each course should be offset to the back and the curve will then become bigger. The minimum radius is therefore that of the first course.

When using geogrid, it must cover 100% of the surface around the curve. To do this, additional layers of geogrid are placed on the next course of blocks to fill voids created from previous course (as illustrated in green).
INSTALLATION GUIDE
RETAINING WALLS

External curve

When building a wall with an external curve, it is recommended to start building the wall at the center of the curve and place blocks alternately to the left and right of the central block. Unlike internal curves, the external curve gets smaller as courses are added. The minimum radius is therefore that of the last course.

When using geogrid, it must cover 100% of the surface around the curve. To achieve this, additional layers of geogrid are placed on the same course of blocks to fill voids (as illustrated in green). In this case, we recommend at least 3" (75 mm) of backfill in between the overlapping sections.
Fencing

Fencing can be erected behind the blocks. Fence posts must be placed in formwork tubes positioned during construction of the wall and then filled with concrete. The geogrid may be cut to accommodate installation of the tubes. Cut the geogrid in alignment with the center of the formwork tube and perpendicular to the wall, thus creating two geogrid panels. Connect the two geogrid panels at the front and back of the formwork tube and bend the geogrid to fit around the formwork.

Guard Rail

As with fencing, a guardrail can be incorporated behind the blocks. The guardrail posts must be installed during construction of the wall. The geogrid is cut perpendicular to the wall and in alignment with the center of the post, thus creating two geogrid panels. These two panels are connected at the front and back of the post. The geogrid can be bent to fit around the post.
INSTALLATION GUIDE
RETAINING WALLS

Tiered Wall

Although tiered walls look appealing, it is important to take into account the additional load the upper wall applies on the lower wall. If the distance between the walls is at least twice the height of the lower wall, the walls are generally independent of each other. However, if this distance is less the lower wall must be built to take account of the load of the upper wall and geogrids may be required.

If $H_1 > H_2$ and $D > (H_1 \times 2)$
The walls are generally independent of each other. Otherwise, the construction of the lower wall must take into account the load of the upper wall (as shown below).
Installation Outline

01 EXCAVATION
A. Check the location of existing structures and utilities before starting the excavation.
B. Dig out a trench. The trench should be 12” wider than the block width (6” (150 mm) at the front and at the back of the wall).
C. The trench should be a minimum 12” (300mm) deep. This depth will provide 6” (150mm) for the compacted base and a minimum 6” (150mm) free-standing wall embedment.
D. In areas where unstable soils or one particularly affected by freeze-thaw cycles, a thicker compacted base may be necessary.
E. The foundation soil should be checked to make sure it is firm, level and capable of supporting the freestanding wall.

02 FOUNDATION
A. Cover the excavated area with a geotextile. Create a leveling pad of compacted aggregate base material. The pad should be composed of 0-¾” (0-20 mm) crushed stone with a minimum thickness of 6” (150 mm).

NOTE FOR STEPPED FOUNDATION
A wall built on an incline requires stepped foundations. For steep inclines, several steps may be required. Construction should start at the lowest level. Each of the steps must follow a level horizontal path and the vertical distance separating the successive steps must equal the height of a block.

03 BUILDING THE FIRST COURSE
A. Using blocks of the same height, place the first course on the compacted leveling pad according to the predetermined layout. Check the alignment and leveling in all directions and make sure that all the blocks are in full contact with the leveling pad and properly supported.
B. Place the blocks side by side. There must be no space between adjacent blocks. For alignment of straight walls, use a string line aligned on the connector’s slots of applicable units, or back of the block of full solid units.
C. For tapered units, alternate front and back faces to obtain straight walls.
Installation Outline

04 SUBSEQUENT COURSES
A. Clean the top of each block before laying the next course. Depending on the type of block, install the connectors if available on each block.
B. Stagger joints from one row to the next.
C. Glue all modules at each row with a concrete adhesive for securing.
D. All Free-standing walls must be installed in vertical position.
E. Any cavities in the blocks must be filled with 3/4” (20 mm) clean stone.
F. Continue building to the desired and permissible height.

05 FINISHING
A. Position the cap units (if applicable) or the final course of blocks to complete the wall. The cap units (if applicable) or final course of blocks must be fixed to the subjacent blocks using concrete adhesive and there must be no space between the blocks.
GENERAL NOTE

It is important to adequately glue each row with a concrete adhesive in order to obtain a stable pillar.

If you are planning to install a light on top of the pillar, make sure you run the electrical wires prior to installing the blocks.

If you are planning to build a pillar with a planter, make sure to install a geotextile membrane inside the pillar before filling the cavity with planting soil.

INSTALLATION OUTLINE

01 EXCAVATION
A. Check the location of existing structures and utilities before starting the excavation.
B. Excavate an area that is 12” (300 mm) wider than the pillar (6” [150 mm] at each side of the pillar).
C. The excavated area should be a minimum 12” (300mm) deep. This depth will provide 6” (150mm) for the compacted base and a minimum 6” (150mm) of embedment.
D. In areas where unstable soils or one particularly affected by freeze-thaw cycles, a thicker compacted base may be necessary.
E. The foundation soil should be checked to make sure it is firm, level and capable of supporting the pillar.

02 FOUNDATION
A. Cover the excavated area with a geotextile. Create a leveling pad of compacted granular base material. The pad should be composed of 0-¾” (0-20 mm) crushed stone with a minimum thickness of 6” (150 mm).

03 BUILDING THE FIRST COURSE
A. Using the corresponding pillar or corner units, place the first course on the compacted base according to the predetermined layout. Check the alignment and leveling in all directions and make sure that all the blocks are in full contact with the base and properly supported.
Installation outline

04 SUBSEQUENT COURSES
A. Clean the top of each block before laying the next course.
B. Stagger joints from one row to the next.
C. Glue all modules at each row with a concrete adhesive for securing.
D. Backfill the excavated area surrounding the pillar.
E. Continue building to desired and permissible height.

05 CROWNING
A. Crown the pillar using Techo-Bloc Pillar cap units and securing to blocks underneath with a concrete adhesive.
INSTALLATION GUIDE

FREESTANDING WALLS- BOREALIS

BOREALIS

A. BOREALIS DOUBLE-SIDED WALL UNITS
 SECURE EACH ROW WITH CONCRETE ADHESIVE

B. EMBEDMENT DEPTH, 6" (150 mm) MIN.

C. 24" (612 mm) MAX.

D. GEOTEXTILE

E. COMPACTED GRANULAR LEVELING PAD, 6" (150 mm) THICK MIN. THICKNESS
 ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL
INSTALLATION GUIDE
GRILL ISLAND - BOREALIS

A. YORK COUNTER TOP 24” X 36” X 2 ¼” (CUT ON FIELD AS REQUIRED)
B. BOREALIS WALL UNIT
C. BOREALIS WALL UNIT CUT IN HALF (CUT ON FIELD)
D. BOREALIS WALL UNIT (CUT ON FIELD AS REQUIRED)
E. CAST IN PLACE CONCRETE SLAB 4350 PSI (30 MPA), 5” (125 MM) THICK
F. 4X4-4/4 (102X102-MW25.8XMW25.8) WELDED WIRE MESH AND/OR REBAR AS PER SITE CONDITIONS
G. 12” (300 MM) DIA. CONCRETE PILLAR, AS PER LOCAL CODE
H. 3/4” (20 MM) CLEAN STONE
I. GEOTEXTILE
J. NATURAL SOIL OR COMPACTED BACKFILL

QUANTITY OF MATERIALS REQUIRED
- York Counter top 24” × 36” × 2 ¼”: 4
- Borealis wall unit: 28

NOTE: Appliances and utilities may vary for each project and are not shown on this drawing. This drawing is shown for inspiration only and surplus or shortage of materials may result. It is the user’s responsibility to verify for the quantity of materials required. Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the grill island comply with local regulations and code requirements. Concrete pillars extending to frost line may be required as per local code. Check your local building code before installing.
INSTALLATION GUIDE
RETAINING WALL DESIGN CHART - BRANDON 180 mm

EQUIVALENT TO TWICE THE BRANDON 90 mm

The information contained in the design charts is supplied for information purposes only. Techo-Bloc and its predecessors, successors, beneficiaries, employees, associates, administrators and insurers can not under any circumstances be held liable for the incorrect use of information contained in design charts. This chart should be read in conjunction with the notes on page 99.

CASE № 1
Inclined wall (4.4°)
Surcharge: 6 kPa

CASE № 2
Inclined wall (4.4°)
Slope: 1V:3H

THE DESIGN CHARTS WERE DEVELOPED BASED ON THE FOLLOWING CONDITIONS:

- Geogrid layout determined as per the requirements of the “Design Manual for Segmental Retaining Walls, 3rd Edition” from the National Concrete Masonry Association.
- Geogrid type Miragrid® 3XT from Tencate Mirafi.
- Soil parameters: reinforced soil ($\phi = 36^\circ$, $\gamma = 21$ kN/m3); retained soil ($\phi = 28^\circ$, $\gamma = 20$ kN/m3); foundation soil ($\phi = 28^\circ$, $\gamma = 19$ kN/m3).
- The bearing capacity of the soil, settlement, and global stability must be verified and validated by a qualified geotechnical engineer.
- The seismic analysis was not considered.
- The hydrostatic pressure is not considered. The wall must be provided with an adequate drainage system.
- 6 kPa (125 psf) surcharge (cars and light trucks).
- The design charts do not apply to tiered walls.

For further information, please contact our technical service department.
Email: WALLS@TECHO-BLOC.COM Web site: WWW.TECHO-BLOC.COM
1-Row Pattern | Laying Patterns

The 1-row pattern provides three different combinations. Each combination is 10.38’ (3.165 m) long and 7 1/16’’ (180 mm) high. This pattern can be used for installing the last row of modules or where other patterns cannot be used.

<table>
<thead>
<tr>
<th>NUMBER OF BLOCKS REQUIRED</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRANDON</td>
<td>A</td>
</tr>
<tr>
<td>67% of the surface</td>
<td>4</td>
</tr>
<tr>
<td>33% of the surface</td>
<td>1</td>
</tr>
</tbody>
</table>
3-Row Pattern | Laying Patterns

The 3-row pattern is 10.38’ (3.165 m) long and 21 ¼” (540 mm) high. This pattern allows a continuous leveled surface every 21 ¼” (540 mm), which corresponds to the recommended maximum spacing between the layers of geogrid in a Brandon wall. This pattern is recommended when using the geogrid.

<table>
<thead>
<tr>
<th>NUMBER OF BLOCKS REQUIRED</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRANDON</td>
<td></td>
</tr>
<tr>
<td>67% of the surface - Brandon 90 mm</td>
<td>12</td>
</tr>
<tr>
<td>33% of the surface - Brandon 180 mm</td>
<td>3</td>
</tr>
</tbody>
</table>
The 4-row pattern is 10.38' (3.165 m) long and 28 3/8'' (720 mm) high. This pattern should be used only where the geogrid is not required.

NUMBER OF BLOCKS REQUIRED

<table>
<thead>
<tr>
<th>BRANDON</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>67% of the surface</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>33% of the surface</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

MODULE

- **A**
- **B**
- **C**
INSTALLATION GUIDE

FREESTANDING WALLS - BRANDON 90 & 180 mm

BRANDON 90 mm & 180 mm

A. TECH-O-BLOC CAP UNIT SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE
B. BRANDON 90 mm AND 180 mm DOUBLE-SIDED WALL UNITS SECURE EACH ROW WITH CONCRETE ADHESIVE
C. CONNECTOR
D. EMBEDMENT DEPTH, 6” (150 mm) MIN.
E. 29 7/16” (750 mm) MAX.
F. GEOTEXTILE
G. COMPACTED GRANULAR LEVELING PAD, 6” (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Cavities, grooves and connectors are not illustrated to avoid overloading the image.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

GENERAL NOTES

1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Cavities, grooves and connectors are not illustrated to avoid overloading the image.
INSTALLATION GUIDE
DOUBLE-SIDED WALL RADIUS - BRANDON 90 & 180 mm

It is the user’s responsibility to verify for the quantity of materials required.

STEPS

BRANDON 90 mm

BRANDON 180 mm

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
PILLARS - BRANDON 90 & 180 mm

- **BRANDON 90 mm**
 - A. PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE
 - B. BRANDON 90 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
 - C. EMBEDMENT DEPTH: 150 mm (6") MIN.
 - D. 900 mm (35 7/16"), HEIGHT PER PALLET
 - E. GEOTEXTILE
 - F. COMPACTED GRANULAR BASE 150 mm (6") THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

- **BRANDON 180 mm**
 - A. PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE
 - B. BRANDON 180 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
 - C. EMBEDMENT DEPTH: 150 mm (6") MIN.
 - D. 900 mm (35 7/16"), HEIGHT PER PALLET
 - E. GEOTEXTILE
 - F. COMPACTED GRANULAR BASE 150 mm (6") THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
PILLARS - BRANDON 90 & 180 mm

OPTION A
A. PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE
B. BRANDON 90 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. BRANDON 180 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
D. EMBEDMENT DEPTH: 150 mm (6") MIN.
E. 900 mm (35 7/16"), 1 080 mm (42 1/2"), MAXIMUM HEIGHT
F. GEOTEXTILE
G. COMPACTED GRANULAR BASE 150 mm (6") THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

OPTION B
A. PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE
B. BRANDON 90 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. BRANDON 180 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
D. EMBEDMENT DEPTH: 150 mm (6") MIN.
E. 900 mm (35 7/16"), 1 080 mm (42 1/2"), MAXIMUM HEIGHT
F. GEOTEXTILE
G. COMPACTED GRANULAR BASE 150 mm (6") THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
GRILL ISLAND - BRANDON 90 & 180 mm

A. YORK COUNTER TOP 24” × 36” × 2 1/4”
B. BRANDON 90 mm UNIT (A, B OR C) – LONG FACE EXPOSED (SHOWN WITH UPPERCASE LETTER)
C. BRANDON 90 mm UNIT (A, B OR C) – SHORT FACE EXPOSED (SHOWN WITH LOWERCASE LETTER)
D. BRANDON 180 mm UNIT (A, B OR C) – LONG FACE EXPOSED (SHOWN WITH UPPERCASE LETTER)
E. BRANDON 180 mm UNIT (A, B OR C) – SHORT FACE EXPOSED (SHOWN WITH LOWERCASE LETTER)
F. BRANDON 90 mm PILLAR UNIT
G. BRANDON 180 mm PILLAR UNIT
H. BRANDON UNIT CUT ON FIELD
I. CAST IN PLACE CONCRETE SLAB 4350 PSI (30 MPA), 5” (125 MM) THICK
J. 4X4-4/4 (102X102-MW25.8XMW25.8) WELDED WIRE MESH AND/OR REBAR AS PER SITE CONDITIONS
K. 12” (300 MM) DIA. CONCRETE PILLAR, AS PER LOCAL CODE
L. 3/4” (20 MM) CLEAN STONE
6” (150 MM) THICK MIN. AS PER SITE CONDITIONS
M. NATURAL SOIL OR COMPACTED BACKFILL
N. GEOTEXTILE

QUANTITY OF MATERIALS REQUIRED
- York Counter top 24” × 36” × 2 1/4”: 4
- BRANDON 90 mm unit: 20 A, 20 B, 18 C
- BRANDON 180 mm unit: 10 A, 10 B, 9 C
- BRANDON 90 mm Pillar unit: 18
- BRANDON 180 mm Pillar unit: 15

NOTE: Appliances and utilities may vary for each project and are not shown on this drawing. This drawing is shown for inspiration only and surplus or shortage of materials may result. It is the user’s responsibility to verify for the quantity of materials required. Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the grill island comply with local regulations and code requirements. Concrete pillars extending to frost line may be required as per local code. Check your local building code before installing.
INSTALLATION GUIDE
PIZZA OVEN - BRANDON 90 & 180 mm

NOTE: Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the pizza oven comply with local regulations and code requirements. The construction of the base should include the installation of a concrete slab and pillars under the slab. The depth of the pillars and reinforcement requirements should be determined based on site conditions and comply with local code.
INSTALLATION GUIDE
RETAINING WALL DESIGN CHART - ESCALA 3.5"

The information contained in the design charts is supplied for information purposes only. Techo-Bloc and its predecessors, successors, beneficiaries, employees, associates, administrators and insurers can not under any circumstances be held liable for the incorrect use of information contained in design charts. This chart should be read in conjunction with the notes on 99.

CASE Nº 1
Inclined wall (4°)
Surcharge: 6 kPa

CASE Nº 2
Inclined wall (4°)
Slope: 1V:3H

THE DESIGN CARTS WERE DEVELOPED BASED ON THE FOLLOWING CONDITIONS:

- Geogrid layout determined as per the requirements of the “Design Manual for Segmental Retaining Walls, 3rd Edition” from the National Concrete Masonry Association.
- Geogrid type Miragrid® 3XT from Tencate Mirafi.
- Soil parameters: reinforced soil ($\phi = 36^\circ$, $\gamma = 21$ kN/m3); retained soil ($\phi = 28^\circ$, $\gamma = 20$ kN/m3); foundation soil ($\phi = 28^\circ$, $\gamma = 19$ kN/m3).
- The bearing capacity of the soil, settlement, and global stability must be verified and validated by a qualified geotechnical engineer.
- The seismic analysis was not considered.
- The hydrostatic pressure is not considered. The wall must be provided with an adequate drainage system.
- 6 kPa (125 psf) surcharge (cars and light trucks).
- The design charts do not apply to tiered walls.

For further information, please contact our technical service department.

Email: WALLS@TECHO-BLOC.COM Web site: WWW.TECCHO-BLOC.COM
INSTALLATION GUIDE
FREESTANDING WALLS - ESCALA 3.5"

ESCALA 3.5"

A. TECHO-BLOC CAP UNIT SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE
B. ESCALA 3.5" DOUBLE-SIDED WALL UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. CONNECTOR
D. EMBEDMENT DEPTH, 6" (150 mm) MIN.
E. 750 mm (29 7/16") MAX.
F. GEOTEXTILE
G. COMPACTED GRANULAR BASE 0-20 mm (0-3/4"), 300 mm (12") THICK MIN.

90° CORNER OF A DOUBLE-SIDED WALL

1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Cavities, grooves and connectors are not illustrated to avoid overloading the image.
5. It is possible to alternate the blocks (A, B or C) in the same row to create different patterns. However, a corner block must always be present at the end of a row and must be alternated for each subsequent row.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

* It is possible to alternate the blocks (A, B or C) in the same row to create different patterns. However, a corner block must always be present at the end of a row and must be alternated for each subsequent row.
INSTALLATION GUIDE
DOUBLE-SIDED WALL RADIUS - ESCALA 3.5"

It is the user’s responsibility to verify for the quantity of materials required.

STEPS

ESCALA 3.5"

For all possible combinations of walls and caps, please refer to the correspondence table on 95.

CAP RADIUS - ESCALA 3.5"

It is the user’s responsibility to verify for the quantity of materials required.
INSTALLATION GUIDE
GRAVITY AND REINFORCED WALLS - G-FORCE

A. CAP FROM TECHO-BLOC
B. G-FORCE BLOCK FROM TECHO-BLOC
C. WALL INCLINATION (3.9°)
D. EXPOSED HEIGHT
E. HDPE VERTICAL KEY
F. EMBEDMENT DEPTH
G. TOP SOIL
H. LOW PERMEABILITY SOIL
I. 3/4” (20 MM) CLEAN STONE
J. RETAINED SOIL
K. GEOTEXTILE
L. PERFORATED DRAIN
M. LEVELING PAD
N. FOUNDATION SOIL
O. GEOGRID
P. REINFORCED SOIL
Q. GEOGRID LENGTH

STEPS - G-FORCE

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
PILLARS - G-FORCE

G-FORCE PILLAR

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)
B. G-FORCE UNIT SECURE EACH ROW WITH
 CONCRETE ADHESIVE
C. EMBEDMENT 6" (150 mm) MIN.
D. 32" (813 MM) HEIGHT PER PALLET
 48" (1219 MM), MAX. HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 6" (150 mm)
 THICK MIN. THICKNESS ACCORDING TO
 PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
FREESTANDING WALLS - GRAPHIX

GRAPHIX

A. TECHO-BLOC CAP UNIT SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE
B. GRAPHIX DOUBLE-SIDED WALL UNITS SECURE EACH ROW WITH CONCRETE ADHESIVE.
C. CONNECTOR
D. EMBEDMENT DEPTH, 6” (150 mm) MIN.
E. 2 3/4” (600 mm) MAX.
F. FOR THE FIRST ROW, ALWAYS USE THE DEEPER GRAPHIX BLOCK
G. GEOTEXTILE
H. COMPACTED GRANULAR LEVELING PAD, 6” (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Connectors are not illustrated to avoid overloading the image.
5. It is possible to alternate the blocks (1, 2, 3 or 4) in the same row to create different patterns. However, a corner block (1A, 2A, 3A or 4A) must always be present at the end of a row and must be alternated for each subsequent row.
6. At the corner, make sure to place the blocks so that the grooves of the block cannot be seen.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

* It is possible to alternate the blocks (1, 2, 3 or 4) in the same row to create different patterns. However, a corner block and a cut corner block (1A, 2A, 3A or 4A) must always be present at the end of a row and must be alternated for each subsequent row.
INSTALLATION GUIDE

PILLARS - GRAPHIX

A. PILLAR CAP UNIT (SECURE WITH CONCRETE ADHESIVE)

B. GRAPHIX CORNER UNIT

SECURE EACH ROW WITH CONCRETE ADHESIVE

CUT EACH BLOCK AT 16” (406 mm) FROM THE CORNER EDGE

C. USE THE BLOCKS 1A-3A FOR THE ODD ROWS,

D. USE THE BLOCKS 2A-4A FOR THE EVEN ROWS

E. EMBEDMENT DEPTH 6” (150 mm) MIN.

F. 23 5/8’ (600 mm) HEIGHT PER PALLET

47 ¼” (1200 mm) MAXIMUM HEIGHT

G. GEOTEXTILE

H. COMPACTED GRANULAR BASE 6” (150 mm) THICK MIN.

THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

NOTES:

- ALL UNITS MUST BE CUT ON FIELD
- USE A CHISEL FOR DESIRED SPLITTED TEXTURE FACE

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
FREESTANDING WALLS - MANCHESTER

MANCHESTER
A. TECHO-BLOC CAP UNIT SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE
B. MANCHESTER DOUBLE-SIDED WALL UNITS SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT DEPTH, 6" (150 mm) MIN.
D. 21 7/16" (550 mm) MAX. FOR BLOCK DEPTH OF 7 7/8"
 (200 mm)
D. 29 7/16" (750 mm) MAX. FOR BLOCK DEPTH OF 11 13/16"
 (300 mm)
E. GEOTEXTILE
F. COMPACTED GRANULAR LEVELING PAD, 6" (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL
1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL
1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
INSTALLATION GUIDE
PILLARS - MANCHESTER

MANCHESTER PILLAR

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)
B. MANCHESTER UNIT SECURE EACH ROW
 WITH CONCRETE ADHESIVE
C. EMBEDMENT 6” (150 mm) MIN.
D. 35 7/8” (900 mm), HEIGHT PER PALLET
 47 1/4” (1200 mm), MAXIMUM HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 150 mm (6”)
 THICK MIN. THICKNESS ACCORDING TO
 PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE

RETAINING WALL DESIGN CHART - MINI-CRETA 6”

EQUIVALENT TO TWICE THE MINI-CRETA 3”

The information contained in the design charts is supplied for information purposes only. Techo-Bloc and its predecessors, successors, beneficiaries, employees, associates, administrators and insurers can not under any circumstances be held liable for the incorrect use of information contained in design charts. **This chart should be read in conjunction with the notes on page 99.**

CASE N° 1

Inclined wall (5°)
Surcharge: 6 kPa

CASE N° 2

Inclined wall (5°)
Slope: 1V:3H

THE DESIGN CHARTS WERE DEVELOPED BASED ON THE FOLLOWING CONDITIONS:

- Geogrid layout determined as per the requirements of the “Design Manual for Segmental Retaining Walls, 3rd Edition” from the National Concrete Masonry Association.
- Geogrid type Miragrid® 3XT from Tencate Mirafi.
- Soil parameters: reinforced soil ($\phi = 36^\circ, \gamma = 21 \text{kN/m}^3$); retained soil ($\phi = 28^\circ, \gamma = 20 \text{kN/m}^3$); foundation soil ($\phi = 28^\circ, \gamma = 19 \text{kN/m}^3$).
- The bearing capacity of the soil, settlement, and global stability must be verified and validated by a qualified geotechnical engineer.
- The seismic analysis was not considered.
- The hydrostatic pressure is not considered. The wall must be provided with an adequate drainage system.
- 6 kPa (125 psf) surcharge (cars and light trucks).
- The design charts do not apply to tiered walls.

For further information, please contact our technical service department.

Email: WALLS@TECHO-BLOC.COM Web site: WWW.TECHO-BLOC.COM
1-Row Pattern | Laying Patterns

The 1-row pattern provides five different combinations. Each combination is 8.9’ (2.7 m) long and 5 7⁄8” (150 mm) high. This pattern can be used to lay the last course of units or when the other models cannot be used.

NUMBER OF BLOCKS REQUIRED

<table>
<thead>
<tr>
<th>MINI-CRETA</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>67% of the surface -</td>
<td>4</td>
</tr>
<tr>
<td>Mini-Creta 3”</td>
<td></td>
</tr>
<tr>
<td>33% of the surface -</td>
<td>1</td>
</tr>
<tr>
<td>Mini-Creta 6”</td>
<td></td>
</tr>
</tbody>
</table>
3-Row Pattern | Laying Patterns

The 3-row pattern provides four different combinations. Each combination is 8.9’ (2.7 m) long and 17\(\frac{11}{16}\)” (450 mm) high. This pattern gives a leveled surface every 17\(\frac{11}{16}\)” (450 mm), which is the recommended spacing between two layers of geogrid in a Mini-Creta wall. This pattern is recommended when using geogrid.

NUMBER OF BLOCKS REQUIRED

<table>
<thead>
<tr>
<th>MINI-CRETA</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>78% of the surface - Mini-Creta 3”</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>14</td>
</tr>
<tr>
<td>22% of the surface - Mini-Creta 6”</td>
<td>2</td>
</tr>
</tbody>
</table>
5-Row Pattern | Laying Patterns

The 5-row pattern provides three different combinations. Each combination is 8.9’ (2.7 m) long and 29 1⁄2” (750 mm) high. This pattern should only be used when geogrid is not required.

NUMBER OF BLOCKS REQUIRED

<table>
<thead>
<tr>
<th>MINI-CRETA</th>
<th>MODULE</th>
<th>A</th>
<th>B OR B*</th>
<th>C OR D</th>
</tr>
</thead>
<tbody>
<tr>
<td>73% of the surface - Mini-Creta 3”</td>
<td></td>
<td>22</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>27% of the surface - Mini-Creta 6”</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
INSTALLATION GUIDE

FREESTANDING WALLS - MINI-CRETA 3” AND 6”

MINI-CRETA 3” & 6”

A. **TECHO-BLOC CAP UNIT SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE**
B. **MINI-CRETA 3” AND 6” DOUBLE-SIDED WALL UNITS SECURE EACH ROW WITH CONCRETE ADHESIVE**
C. **CONNECTOR**
D. **EMBEDMENT DEPTH, 6” (150 mm) MIN.**
E. **29 7/16” (750 mm) MAX.**
F. **GEOTEXTILE**
G. **COMPACTED GRANULAR LEVELING PAD, 6” (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS**

90° CORNER OF A DOUBLE-SIDED WALL

The corner block must be cut to reveal the texture

1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Cavities, grooves and connectors are not illustrated to avoid overloading the image.
5. It is possible to alternate the blocks (A, B or C) in the same row to create different patterns. However, a corner block must always be present at the end of a row and must be alternated for each subsequent row.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

* It is possible to alternate the blocks (A, B or C) in the same row to create different patterns. However, a corner block must always be present at the end of a row and must be alternated for each subsequent row.
INSTALLATION GUIDE
DOUBLE-SIDED WALL RADIUS - MINI-CRETA 3” AND 6”

It is the user’s responsibility to verify for the quantity of materials required.

STEPS

MINI-CRETA 3”

MINI-CRETA 6”

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
PILLARS- MINI-CRETA 3” AND 6”

PILLAR 24”×3” & 24”×6” MINI-CRETA - OPTION A

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)
B. PILLAR 24”×6” (MINI-CRETA) UNIT
 SECURE EACH ROW WITH CONCRETE ADHESIVE
C. PILLAR 24”×3” (MINI-CRETA) UNIT
 SECURE EACH ROW WITH CONCRETE ADHESIVE
D. EMBEDMENT 6” (150 mm) MIN.
E. 35 7/16” (900 mm)
 47 1/4” (1200 mm), MAXIMUM HEIGHT
F. GEOTEXTILE
G. COMPACTED GRANULAR BASE 150 mm (6”)
 THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

PILLAR 24”×3” & 24”×6” MINI-CRETA - OPTION B

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)
B. PILLAR 24”×3” (MINI-CRETA) UNIT
 SECURE EACH ROW WITH CONCRETE ADHESIVE
C. PILLAR 24”×6” (MINI-CRETA) UNIT
 SECURE EACH ROW WITH CONCRETE ADHESIVE
D. EMBEDMENT 6” (150 mm) MIN.
E. 35 7/16” (900 mm)
 47 1/4” (1200 mm), MAXIMUM HEIGHT
F. GEOTEXTILE
G. COMPACTED GRANULAR BASE 150 mm (6”)
 THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
PILLARS- MINI-CRETA 3” AND 6”

PILLAR 24”x3”
MINI-CRETA
A. PILLAR CAP UNIT (SECURE WITH CONCRETE ADHESIVE)
B. PILLAR 24” × 3” (MINI-CRETA) UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT 6” (150 mm) MIN.
D. 35 7/16” (900 mm), HEIGHT PER PALLET 47 1/4” (1200 mm), MAXIMUM HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 150 mm (6”) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

PILLAR 24”x6”
MINI-CRETA
A. PILLAR CAP UNIT (SECURE WITH CONCRETE ADHESIVE)
B. PILLAR 24” × 6” (MINI-CRETA) UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT 6” (150 mm) MIN.
D. 35 7/16” (900 mm), HEIGHT PER PALLET 47 1/4” (1200 mm), MAXIMUM HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 150 mm (6”) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
GRILL ISLAND 6 FT - MINI-CRETA 3” AND 6”

A. YORK COUNTER TOP 24” × 36” × 2 ¼”
B. MINI-CRETA 3” UNIT (A, B, B*, C, OR D)
C. MINI-CRETA 6” UNIT (A, B, B*, C, OR D)
D. PILLAR 24” × 36” (MINI-CRETA) UNIT
E. PILLAR 24” × 36” (MINI-CRETA) UNIT (CUT ON FIELD)
F. CAST IN PLACE CONCRETE SLAB 4350 PSI (30 MPA), 5” (125 MM) THICK
G. 4X4-4/4 (102X102-MW25.8XMW25.8) WELDED WIRE MESH AND/OR REBAR AS PER SITE CONDITIONS
H. 12” (300 MM) DIA. CONCRETE PILLAR, AS PER LOCAL CODE
I. ½” (20 MM) CLEAN STONE
J. NATURAL SOIL OR COMPACTED BACKFILL
K. GEOTEXTILE

QUANTITY OF MATERIALS REQUIRED
- York Counter top 24” × 36” × 2 ¼”: 4
- Mini-Creta 3” unit: 32 A, 24 B, 8 B*, 14 C, 10 D
- Mini-Creta 6” unit: 6 A, 6 B, 2 B*, 6 C, 6 D
- Pillar 24” × 6” (Mini-Creta) unit: 28

NOTE: Appliances and utilities may vary for each project and are not shown on this drawing. This drawing is shown for inspiration only and surplus or shortage of materials may result. It is the user’s responsibility to verify for the quantity of materials required. Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the grill island comply with local regulations and code requirements. Concrete pillars extending to frost line may be required as per local code. Check your local building code before installing.
INSTALLATION GUIDE
SQUARE FIRE PIT - MINI-CRETA 3" AND 6"

SECTION 1-1

A. STEEL BOX INSERT
B. CLEAN STONE 3/4" (20 mm), 4" (100 mm) THICK
C. PIEDIMONTE CAP (12"x30")
D. MINI-CRETA 3" BLOCK
E. MINI-CRETA 6" BLOCK
F. TECHO-BLOC PAVERS OR SLABS
G. SETTING BED 1" (25 mm)
H. COMPACTED GRANULAR 0-3/4" (0-20 mm)
I. PILLAR 24"x6" MINI-CRETA

QUANTITY OF MATERIALS REQUIRED
- Piedimonte Cap (12"x30") = 6
- Mini-Creta 3" (A) = 8
- Mini-Creta 3" (B or B*) = 8
- Mini-Creta 3" (C or D) = 4
- Mini-Creta 6" (A) = 4
- Mini-Creta 6" (B or B*) = 4
- Mini-Creta 6" (C or D) = 4
- Pillar 24"x6" Mini-Creta = 12

NOTE: Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the firepit comply with local regulations and code requirements.
1-Row Pattern | Laying Patterns

The single row model shows two examples of combination. Each combination is 2.438 m (8') long and 114 mm (4 1/2") high. This model can be used for installing the last row of modules or where other models cannot be used.

<table>
<thead>
<tr>
<th>NUMBER OF BLOCKS REQUIRED</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESCOTT</td>
<td>A</td>
</tr>
<tr>
<td>50% of the surface - Prescott 2.25"</td>
<td>2</td>
</tr>
<tr>
<td>50% of the surface - Prescott 4.5"</td>
<td>1</td>
</tr>
</tbody>
</table>
INSTALLATION GUIDE
RETAINING WALLS - PRESCOTT 2.25” & 4.5”

4-Row Pattern | Laying Patterns

The 4-row model is 1.83 m (6’) long and 457 mm (18”) high. This model allows for a graded area at every 457 mm (18”), which corresponds to the recommended spacing between the layers of geogrid in a Prescott wall. **This model is recommended when using geogrid.**

NUMBER OF BLOCKS REQUIRED

<table>
<thead>
<tr>
<th>PRESCOTT</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>67% of the surface - Prescott 2.25”</td>
<td>A 8</td>
</tr>
<tr>
<td>33% of the surface - Prescott 4.5”</td>
<td>A 2</td>
</tr>
</tbody>
</table>

Diagram of Laying Patterns

The diagram shows the layout of the 4-row pattern with blocks labeled A, B, and C. Geogrids are indicated at the top of the diagram, with the text “(when applicable)” below them.
6-Row Pattern | Laying Patterns

The 6-row model shows two combination examples. This combination is 1.829 m (6') long and 686 mm (27") high. This model should only be used where geogrid is not required.

<table>
<thead>
<tr>
<th>NUMBER OF BLOCKS REQUIRED</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESCOTT</td>
<td>A</td>
</tr>
<tr>
<td>67% of the surface - Prescott 2.25"</td>
<td>12</td>
</tr>
<tr>
<td>33% of the surface - Prescott 4.5"</td>
<td>3</td>
</tr>
</tbody>
</table>
INSTALLATION GUIDE
FREESTANDING WALLS - PRESCOTT 2.25" & 4.5"

PRESCOTT 2.25" & 4.5"

A. TECHO-BLOC CAP UNIT, SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE
B. PRESCOTT 2.25" AND 4.5" DOUBLE-SIDED WALL UNITS SECURE EACH ROW WITH CONCRETE ADHESIVE
C. CONNECTOR
D. EMBEDMENT DEPTH, 6" (150 mm) MIN.
E. 25 1/4" (650 mm) MAX.
F. GEOTEXTILE
G. COMPACTED GRANULAR LEVELING PAD, 6" (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

GENERAL NOTES
1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Cavities, grooves and connectors are not illustrated to avoid overloading the image.
INSTALLATION GUIDE
DOUBLE-SIDED WALL RADIUS - PRESCOTT 2.25" & 4.5"

It is the user's responsibility to verify for the quantity of materials required.

STEPS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
PILLARS - PRESCOTT 2.25” & 4.5”

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)
B. PRESCOTT 2.25” PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT DEPTH, 6” (150 mm) MIN.
D. 40 1/2” (1 029 mm), HEIGHT PER PALLET 45” (1 143 mm), MAX. HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 6” (150 mm)
 THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)
B. PRESCOTT 4.5” PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT DEPTH, 6” (150 mm) MIN.
D. 40 1/2” (1 029 mm), HEIGHT PER PALLET 45” (1 143 mm), MAX. HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 6” (150 mm)
 THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
PILLARS - PRESCOTT 2.25" & 4.5"

OPTION A

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)

B. PRESCOTT 2.25" PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

C. PRESCOTT 4.5" PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

D. EMBEDMENT DEPTH, 6" (150 mm) MIN.

E. 40 1/2" (1.029 mm)
 45" (1.143 mm), MAX. HEIGHT

F. GEOTEXTILE

G. COMPACTED GRANULAR BASE 6" (150 mm)
 THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

OPTION B

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)

B. PRESCOTT 2.25" PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

C. PRESCOTT 4.5" PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

D. EMBEDMENT DEPTH, 6" (150 mm) MIN.

E. 40 1/2" (1.029 mm)
 45" (1.143 mm), MAX. HEIGHT

F. GEOTEXTILE

G. COMPACTED GRANULAR BASE 6" (150 mm)
 THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
RETAINING WALL DESIGN CHART - RAFFINATO 180 mm

EQUIVALENT TO TWICE THE RAFFINATO 90 mm

The information contained in the design charts is supplied for information purposes only. Techo-Bloc and its predecessors, successors, beneficiaries, employees, associates, administrators and insurers can not under any circumstances be held liable for the incorrect use of information contained in design charts. This chart should be read in conjunction with the notes on page 99.

CASE N° 1
Inclined wall (4.4°)
Surcharge: 6 kPa

CASE N° 2
Inclined wall (4.4°)
Slope: 1V:3H

THE DESIGN CHARTS WERE DEVELOPED BASED ON THE FOLLOWING CONDITIONS:

• Geogrid layout determined as per the requirements of the “Design Manual for Segmental Retaining Walls, 3rd Edition” from the National Concrete Masonry Association.
• Geogrid type Miragrid® 3XT from Tencate Mirafi.
• Soil parameters: reinforced soil (φ = 36°, γ = 21 kN/m³); retained soil (φ = 28°, γ = 20 kN/m³); foundation soil (φ = 28°, γ = 19 kN/m³).
• The bearing capacity of the soil, settlement, and global stability must be verified and validated by a qualified geotechnical engineer.
• The seismic analysis was not considered.
• The hydrostatic pressure is not considered. The wall must be provided with an adequate drainage system.
• 6 kPa (125 psf) surcharge (cars and light trucks).
• The design charts do not apply to tiered walls.

For further information, please contact our technical service department.
Email: WALLS@TECHO-BLOC.COM Web site: WWW.TECHO-BLOC.COM
1-Row Pattern | Laying Patterns

The single row model shows two examples combination. Each combination is 2.4 m (7.87”) long and 180 mm (7 1/16”) high. This model can be used for installing the last row of modules or where other models cannot be used.

NUMBER OF BLOCKS REQUIRED

<table>
<thead>
<tr>
<th>RAFFINATO</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 % of the surface - Raffinato 90 mm</td>
<td>6 A</td>
</tr>
<tr>
<td>50 % of the surface - Raffinato 180 mm</td>
<td>3 A</td>
</tr>
</tbody>
</table>
3-Row Pattern | Laying Patterns

The 3-row model is 2.4 m (7.87') long and 540 mm (21⅛") high. This model allows for a graded area at every 540 mm (21⅛’), which corresponds to the recommended spacing between the layers of geogrid in a Raffinato wall. *This model is recommended when using geogrid.*

<table>
<thead>
<tr>
<th>NUMBER OF BLOCKS REQUIRED</th>
<th>MODULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAFFINATO</td>
<td>A</td>
</tr>
<tr>
<td>67 % of the surface - Raffinato 90 mm</td>
<td>24</td>
</tr>
<tr>
<td>33 % of the surface - Raffinato 180 mm</td>
<td>6</td>
</tr>
</tbody>
</table>
4-Row Pattern | Laying Patterns

The 4-row model shows two combination examples. This combination is 2.4 m (7.87') long and 720 mm (28 3/8”) high. This model should only be used where geogrid is not required.

NUMBER OF BLOCKS REQUIRED

<table>
<thead>
<tr>
<th>MODULE</th>
<th>RAFFINATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>67 % of the surface - Raffinato 90 mm</td>
<td>32</td>
</tr>
<tr>
<td>33 % of the surface - Raffinato 180 mm</td>
<td>8</td>
</tr>
</tbody>
</table>
INSTALATION GUIDE
FREESTANDING WALLS - RAFFINATO 90 mm & 180 mm

RAFFINATO 90 mm & 180 mm

A. TECHO-BLOC CAP UNIT SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE
B. RAFFINATO 90 mm AND 180 mm DOUBLE-SIDED WALL UNITS SECURE EACH ROW WITH CONCRETE ADHESIVE
C. CONNECTOR
D. EMBEDMENT DEPTH, 6” (150 mm) MIN.
E. 29 7⁄16” (750 mm) MAX.
F. GEOTEXTILE
G. COMPACTED GRANULAR LEVELING PAD, 6” (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

DOUBLE-SIDED WALL RADIUS

It is the user's responsibility to verify for the quantity of materials required.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

GENERAL NOTES
1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Cavities, grooves and connectors are not illustrated to avoid overloading the image.
INSTALLATION GUIDE
PILLARS - RAFFINATO 90 mm & 180 mm

RAFFINATO 90 mm
A. STONEDGE COLLECTION PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE
B. RAFFINATO 90 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT DEPTH: 150 mm (6”) MIN.
D. 900 mm (35 7/16”), HEIGHT PER PALLET 1080 mm (42 1/2”), MAXIMUM HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 150 mm (6”) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

RAFFINATO 180 mm
A. STONEDGE COLLECTION PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE
B. RAFFINATO 180 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT DEPTH: 150 mm (6”) MIN.
D. 900 mm (35 7/16”), HEIGHT PER PALLET 1080 mm (42 1/2”), MAXIMUM HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 150 mm (6”) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.

INSTALLATION GUIDE

PILLARS - RAFFINATO 90 mm & 180 mm

OPTION A

A. STONEDGE COLLECTION PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE

B. RAFFINATO 90 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

C. RAFFINATO 180 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

D. EMBEDMENT DEPTH: 150 mm (6") MIN.

E. 900 mm (35 7/16"), 1080 mm (42 1/2"), MAXIMUM HEIGHT

F. GEOTEXTILE

G. COMPACTED GRANULAR BASE 150 mm (6") THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

OPTION B

A. STONEDGE COLLECTION PILLAR CAP UNIT, SECURE TO UNITS BELOW WITH A CONCRETE ADHESIVE

B. RAFFINATO 90 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

C. RAFFINATO 180 mm PILLAR UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE

D. EMBEDMENT DEPTH: 150 mm (6") MIN.

E. 900 mm (35 7/16"), 1080 mm (42 1/2"), MAXIMUM HEIGHT

F. GEOTEXTILE

G. COMPACTED GRANULAR BASE 150 mm (6") THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

STEPS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
GRILL ISLAND - RAFFINATO SMOOTH 90 mm & 180 mm

A. YORK COUNTER TOP 24" X 36" X 2 1/4" (CUT ON FIELD AS REQUIRED)
B. RAFFINATO 90 MM UNIT (A) – LONG FACE EXPOSED (SHOWN WITH UPPERCASE LETTER)
C. RAFFINATO 180 MM UNIT (A) – LONG FACE EXPOSED (SHOWN WITH UPPERCASE LETTER)
D. RAFFINATO 180 MM UNIT (A) – SHORT FACE EXPOSED (SHOWN WITH LOWERCASE LETTER)
E. RAFFINATO 90 MM PILLAR UNIT
F. RAFFINATO 180 MM PILLAR UNIT
G. RAFFINATO UNIT CUT ON FIELD AS REQUIRED
H. CAST IN PLACE CONCRETE SLAB 4350 PSI (30 MPA), 5" (125 MM) THICK
I. 4X4-4/4 (102X102-MW25.8XMW25.8) WELDED WIRE MESH AND/OR REBAR AS PER SITE CONDITIONS
J. 12" (300 MM) DIA. CONCRETE PILLAR, AS PER LOCAL CODE
K. 3/4" (20 MM) CLEAN STONE
L. 6" (150 MM) THICK MIN. AS PER SITE CONDITIONS
M. NATURAL SOIL OR COMPACTED BACKFILL

NOTE: Appliances and utilities may vary for each project and are not shown on this drawing. This drawing is shown for inspiration only and surplus or shortage of materials may result. It is the user’s responsibility to verify for the quantity of materials required. Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the grill island comply with local regulations and code requirements. Concrete pillars extending to frost line may be required as per local code. Check your local building code before installing.

QUANTITY OF MATERIALS REQUIRED
- York Counter top 24" X 36" X 2 1/4": 4
- Raffinato 90 mm wall unit: 48 A
- Raffinato 180 mm wall unit: 22 A
- Raffinato 90 mm pillar unit: 16
- Raffinato 180 mm pillar unit: 16
INSTALLATION GUIDE
GRILL ISLAND - RAFFINATO Polished 90 mm & 180 mm

A. YORK COUNTER TOP 24" X 36" X 2 1/4" (CUT ON FIELD AS REQUIRED)
B. RAFFINATO 90 MM UNIT (A) - LONG FACE EXPOSED (SHOWN WITH UPPERCASE LETTER)
C. RAFFINATO 180 MM UNIT (A) - LONG FACE EXPOSED (SHOWN WITH UPPERCASE LETTER)
D. RAFFINATO 180 MM UNIT (A) - SHORT FACE EXPOSED (SHOWN WITH LOWERCASE LETTER)
E. RAFFINATO 90 MM PILLAR UNIT
F. RAFFINATO 180 MM PILLAR UNIT
G. RAFFINATO UNIT CUT ON FIELD AS REQUIRED
H. CAST IN PLACE CONCRETE SLAB 4350 PSI (30 MPA), 5" (125 MM) THICK
I. 4X4-4/4 (102X102 MM) 25.8X25.8 WELDED WIRE MESH AND/OR REBAR AS PER SITE CONDITIONS
J. 12" (300 MM) DIA. CONCRETE PILLAR, AS PER LOCAL CODE
K. 3/4" (20 MM) CLEAN STONE
L. 6" (150 MM) THICK MIN. AS PER SITE CONDITIONS
M. NATURAL SOIL OR COMPACTED BACKFILL

QUANTITY OF MATERIALS REQUIRED
- York Counter top 24" X 36" X 2 1/4": 4
- Raffinato 90 mm wall unit: 48 A
- Raffinato 180 mm wall unit: 22 A
- Raffinato 90 mm pillar unit: 16
- Raffinato 180 mm pillar unit: 16

NOTE: Appliances and utilities may vary for each project and are not shown on this drawing. This drawing is shown for inspiration only and surplus or shortage of materials may result. It is the user’s responsibility to verify for the quantity of materials required. Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the grill island comply with local regulations and code requirements. Concrete pillars extending to frost line may be required as per local code. Check your local building code before installing.
INSTALLATION GUIDE
FREESTANDING WALLS - RÖCKA

RÖCKA

A. RÖCKA DOUBLE-SIDED WALL UNITS SECURE EACH ROW WITH CONCRETE ADHESIVE
B. EMBEDMENT DEPTH, 6” (150 mm) MIN.
C. 24” (612 mm) MAX.
D. GEOTEXTILE
E. COMPACTED GRANULAR LEVELING PAD, 6” (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

1. Alternate odd and even rows
2. Stagger vertical joints by at least ¼ of the length of the block.
3. Glue all modules at each row with a concrete adhesive.
4. It is possible to alternate the blocks (A, B or C) in the same row to create different patterns.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

* It is possible to alternate the blocks (A, B or C) in the same row to create different patterns. However, a minimum distance of ¼ the length of the block is required between the vertical joints.
A. YORK COUNTER TOP 24" X 36" X 2 ¼" (CUT ON FIELD AS REQUIRED)
B. RÖCKA WALL UNIT (A, B OR C)
C. RÖCKA WALL UNIT CUT ON FIELD AS REQUIRED
D. CAST IN PLACE CONCRETE SLAB 4350 PSI (30 MPA), 5" (125 MM) THICK
E. 4X4-4/4 (102X102-MW25.8XMW25.8) WELDED WIRE MESH AND/OR REBAR AS PER SITE CONDITIONS
F. 12" (300 MM) DIA. CONCRETE PILLAR, AS PER LOCAL CODE
G. 3/4" (20 MM) CLEAN STONE
 6" (150 MM) THICK MIN. AS PER SITE CONDITIONS
H. GEOTEXTILE
I. NATURAL SOIL OR COMPACTED BACKFILL

QUANTITY OF MATERIALS REQUIRED
- York Counter top 24" x 36" x 2 ¼": 4
- Röcka wall unit: 22 A, 20 B, 12 C

NOTE: Appliances and utilities may vary for each project and are not shown on this drawing. This drawing is shown for inspiration only and surplus or shortage of materials may result. It is the user’s responsibility to verify for the quantity of materials required. Secure the blocks using a heat resistant concrete adhesive. The installer must ensure that the installation and use of the grill island comply with local regulations and code requirements. Concrete pillars extending to frost line may be required as per local code. Check your local building code before installing.
INSTALLATION GUIDE
RETAINING WALL DESIGN CHART- SEMMA

The information contained in the design charts is supplied for information purposes only. Techo-Bloc and its predecessors, successors, beneficiaries, employees, associates, administrators and insurers can not under any circumstances be held liable for the incorrect use of information contained in design charts. This chart should be read in conjunction with the notes on page 99.

CASE Nº 1
Inclined wall (76°)
Surcharge: 6 kPa

THE DESIGN CHARTS WERE DEVELOPED BASED ON THE FOLLOWING CONDITIONS:

- Geogrid layout determined as per the requirements of the “Design Manual for Segmental Retaining Walls, 3rd Edition” from the National Concrete Masonry Association.
- Geogrid type Miragrid® 3XT from Tencate Mirafi.
- Soil parameters: reinforced soil (φ = 36°, γ = 21 kN/m³); retained soil (φ = 28°, γ = 20 kN/m³); foundation soil (φ = 28°, γ = 19 kN/m³).
- The bearing capacity of the soil, settlement, and global stability must be verified and validated by a qualified geotechnical engineer.
- The seismic analysis was not considered.
- The hydrostatic pressure is not considered. The wall must be provided with an adequate drainage system.
- 6 kPa (125 psf) surcharge (cars and light trucks).
- The design charts do not apply to tiered walls.

For further information, please contact our technical service department.
Email: WALLS@TECHO-BLOC.COM Web site: WWW.TECHO-BLOC.COM
INSTALLATION GUIDE
FREESTANDING WALLS - SEMMA

SEMMA
A. TECHO-BLOC CAP UNIT SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE
B. SEMmA DOUBLE-SIDED WALL UNIT SECURE EACH ROW WITH CONCRETE ADHESIVE
C. CONNECTOR
D. EMBEDMENT DEPTH, 6" (150 mm) MIN.
E. 29 7/16" (750 mm) MAX.
F. GEOTEXTILE
G. COMPACTED GRANULAR LEVELING PAD, 6" (150 mm) THICK MIN. THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

DOUBLE-SIDED WALL RADIUS

It is the user’s responsibility to verify for the quantity of materials required.

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

GENERAL NOTES
1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
4. Cavities, grooves and connectors are not illustrated to avoid overloading the image.
INSTALLATION GUIDE
PILLARS - SEMMA

A. PILLAR CAP UNIT
(SECURE WITH CONCRETE ADHESIVE)
B. SEMMA PILLAR UNIT SECURE EACH ROW
WITH CONCRETE ADHESIVE
C. EMBEDMENT 6" (150 mm) MIN.
D. 35 7/16" (900 mm), HEIGHT PER PALLET
47 3/4" (1200 mm), MAXIMUM HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 6" (150mm)
THICK MIN. THICKNESS ACCORDING TO
PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.

STEPS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE
GRAVITY AND REINFORCED WALLS - SEMMA

GRAVITY WALL DETAIL

A. CAP FROM TECHO-BLOC
B. SEMMA BLOCK FROM TECHO-BLOC
C. WALL INCLINATION (7.6°)
D. EXPOSED HEIGHT
E. HDPE HORIZONTAL KEY
F. EMBEDMENT DEPTH
G. TOP SOIL
H. LOW PERMEABILITY SOIL
I. 3/4” (20 mm) CLEAN STONE, 12” (300 mm) THICK MIN.

REINFORCED WALL DETAIL

J. RETAINED SOIL
K. GEOTEXTILE
L. PERFORATED DRAIN
M. LEVELING PAD
N. FOUNDATION SOIL
O. GEOGRID
P. REINFORCED SOIL
Q. GEOGRID LENGTH
INSTALLATION GUIDE
CAVITY INFILL - SKYSCRAPER

SKYSCRAPER TOP

CAVITY VOLUME = 0.283 ft³ (0.0080 m³)

IN BETWEEN ADJACENT BLOCKS VOLUME = 0.481 ft³ (0.0136 m³)

AGGREGATE INFILL QUANTITY

<table>
<thead>
<tr>
<th>PER UNIT</th>
<th>±1.53 ft³</th>
<th>±0.043 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER WALL AREA</td>
<td>±147.91 lb</td>
<td>±66.65 kg</td>
</tr>
<tr>
<td></td>
<td>±0.51 ft³/ft²</td>
<td>±0.16 m³/m²</td>
</tr>
<tr>
<td></td>
<td>±49.37 lb/ft²</td>
<td>±248 kg/m²</td>
</tr>
</tbody>
</table>

*Assumed aggregate unit weight of 96.8 lb/ft³ (1550 kg/m³)

SKYSCRAPER MIDDLE

CAVITY TYPE 1 VOLUME = 0.313 ft³ (0.0089 m³)

CAVITY TYPE 2 VOLUME = 0.328 ft³ (0.0093 m³)

IN BETWEEN ADJACENT BLOCKS VOLUME = 0.740 ft³ (0.0209 m³)

AGGREGATE INFILL QUANTITY

<table>
<thead>
<tr>
<th>PER UNIT</th>
<th>±2.76 ft³</th>
<th>±0.078 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER WALL AREA</td>
<td>±167.17 lb</td>
<td>±120.9 kg</td>
</tr>
<tr>
<td></td>
<td>±0.92 ft³/ft²</td>
<td>±0.28 m³/m²</td>
</tr>
<tr>
<td></td>
<td>±89.06 lb/ft²</td>
<td>±434 kg/m²</td>
</tr>
</tbody>
</table>

*Assumed aggregate unit weight of 96.8 lb/ft³ (1550 kg/m³)

SKYSCRAPER BASE

CAVITY TYPE 1 VOLUME = 0.475 ft³ (0.0135 m³)

CAVITY TYPE 2 VOLUME = 0.506 ft³ (0.0143 m³)

IN BETWEEN ADJACENT BLOCKS VOLUME = 1.179 ft³ (0.0334 m³)

AGGREGATE INFILL QUANTITY

<table>
<thead>
<tr>
<th>PER UNIT</th>
<th>±4.67 ft³</th>
<th>±0.132 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>PER WALL AREA</td>
<td>±452.06 lb</td>
<td>±204.6 kg</td>
</tr>
<tr>
<td></td>
<td>±1.56 ft³/ft²</td>
<td>±0.47 m³/m²</td>
</tr>
<tr>
<td></td>
<td>±151.01 lb/ft²</td>
<td>±728.5 kg/m²</td>
</tr>
</tbody>
</table>

*Assumed aggregate unit weight of 96.8 lb/ft³ (1550 kg/m³)

VOLUME OF CAVITY FOR EXTENDER = 0.345 ft³ (0.0098 m³)

(FILL WITH CLEAN STONE WHEN EXTENDER IS NOT USED)
INSTALLATION GUIDE

CAVITY INFILL - SKYSCRAPER

SKYSCRAPER BASE + EXTENDER(S)

<table>
<thead>
<tr>
<th># OF EXTENDERS</th>
<th>DEPTH (D)</th>
<th>PER UNIT</th>
<th>PER WALL AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>72 3/8"</td>
<td>±7.35 ft³ (±0.208 m³)</td>
<td>±711 lb (±322 kg)</td>
</tr>
<tr>
<td>2</td>
<td>96 3/4"</td>
<td>±10.02 ft³ (±0.283 m³)</td>
<td>±970 lb (±439 kg)</td>
</tr>
<tr>
<td>3</td>
<td>121 1/8"</td>
<td>±12.69 ft³ (±0.359 m³)</td>
<td>±1228 lb (±566 kg)</td>
</tr>
<tr>
<td>4</td>
<td>145 1/2"</td>
<td>±15.36 ft³ (±0.435 m³)</td>
<td>±1487 lb (±674 kg)</td>
</tr>
<tr>
<td>5</td>
<td>169 7/8"</td>
<td>±18.03 ft³ (±0.510 m³)</td>
<td>±1745 lb (±791 kg)</td>
</tr>
<tr>
<td>6</td>
<td>194 1/4"</td>
<td>±20.70 ft³ (±0.586 m³)</td>
<td>±2004 lb (±908 kg)</td>
</tr>
</tbody>
</table>

Assumed aggregate unit weight of 96.8 lb/ft³ (1550 kg/m³)

Aggregate Infill Quantity

(INCLUDING CAVITY FOR EXTENDER)

- **Cavity Type 1 Volume**: ±0.475 ft³ (±0.0135 m³)
- **Cavity Type 2 Volume**: ±0.506 ft³ (±0.0143 m³)
- **Volume of Cavity for Extender**: ±0.345 ft³ (±0.0098 m³)
- **Volume of Cavity for Extender Units**: ±1.335 ft³ (±0.0378 m³)
- **Volume of Cavity for Base Blocks**: ±1.179 ft³ (±0.0334 m³)

Volumetric Calculations

- **Depth (D)**
 - **48 3/4" (1222 mm)**
 - **24 3/8" (619 mm)**
 - **10 3/16" (273 mm)**
 - **20 3/8" (520 mm)**

Assumed aggregate unit weight of 96.8 lb/ft³ (1550 kg/m³)
A. CAP FROM TECHO-BLOC
B. SKYSCRAPER TOP UNIT FROM TECHO-BLOC
C. SKYSCRAPER MIDDLE UNIT FROM TECHO-BLOC
D. SKYSCRAPER BASE UNIT FROM TECHO-BLOC
E. SKYSCRAPER EXTENDER UNIT FROM TECHO-BLOC
F. WALL INCLINATION:
 - 0.8° (NEAR VERTICAL)
 - 12.7° (INCLINED)
G. EXPOSED HEIGHT
H. PRECAST CONCRETE "U" CONNECTOR
I. PRECAST CONCRETE "Z" CONNECTOR
J. EMBEDMENT DEPTH
K. TOP SOIL
L. LOW PERMEABILITY SOIL
M. 3/4" (20 mm) CLEAN STONE, 12" (300 mm) THICK MIN
N. RETAINED SOIL
O. GEOTEXTILE
P. PERFORATED DRAIN
Q. LEVELING PAD
R. FOUNDATION SOIL
INSTALATION GUIDE
GRAVITY AND REINFORCED WALLS - SUPREMA

GRAVITY WALL DETAIL

A. CAP FROM TECHO-BLOC
B. SUPREMA BLOCK FROM TECHO-BLOC
C. WALL INCLINATION (4.5°)
D. EXPOSED HEIGHT
E. HDPE HORIZONTAL KEY
F. EMBEDMENT DEPTH
G. TOP SOIL
H. LOW PERMEABILITY SOIL
I. 3/4” (20 mm) CLEAN STONE, 12” (300 mm) THICK MIN.

REINFORCED WALL DETAIL

J. RETAINED SOIL
K. GEOTEXTILE
L. PERFORATED DRAIN
M. LEVELING PAD
N. FOUNDATION SOIL
O. GEOGRID
P. REINFORCED SOIL
Q. GEOGRID LENGTH

STEPS - SUPREMA

For all possible combinations of walls and caps, please refer to the correspondence table on 95.
INSTALLATION GUIDE

FREESTANDING WALLS - TRAVERTINA RAW

TRAVERTINA RAW

A. TECHO-BLOC CAP UNIT, SECURED TO UNIT BELOW WITH CONCRETE ADHESIVE

B. TRAVERTINA RAW DOUBLE-SIDED WALL UNIT
SECURE EACH ROW WITH CONCRETE ADHESIVE

C. CONNECTOR

D. EMBEDMENT DEPTH, 6” (150 mm) MIN.

E. 24” (612 mm) MAX.

F. GEOTEXTILE

G. COMPACTED GRANULAR LEVELING PAD, 6" (150 mm) THICK MIN.
THICKNESS ACCORDING TO PROJECT SPECIFIC CONDITIONS

90° CORNER OF A DOUBLE-SIDED WALL

Even Row

Odd Row

DOUBLE-SIDED WALL - END OF A STRAIGHT WALL

GENERAL NOTES

1. Alternate odd and even rows.
2. Stagger joints from one row to the next.
3. Glue all modules at each row with a concrete adhesive.
INSTALLATION GUIDE
PILLARS - TRAVERTINA RAW

TRAVERTINA RAW

A. PILLAR CAP UNIT
 (SECURE WITH CONCRETE ADHESIVE)
B. TRAVERTINA RAW PILLAR UNIT
 SECURE EACH ROW WITH CONCRETE ADHESIVE
C. EMBEDMENT 6" (150 mm) MIN.
D. 36" (917 mm), HEIGHT PER PALLET
 42" (1067 mm), MAXIMUM HEIGHT
E. GEOTEXTILE
F. COMPACTED GRANULAR BASE 6" (150 mm)
 THICK MIN. THICKNESS ACCORDING TO
 PROJECT SPECIFIC CONDITIONS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.

STEPS

For all possible combinations of walls and caps, please refer to the correspondence table on 95.